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Abstract 

           

       Dye sensitized solar cell (DSSC) is a third generation solar cell type. Its 

working principle is based on conversion sunlight to electrical energy. 

       In this work, dye sensitized solar cells (DSSCs) have been fabricated.   

Deposition of TiO2 paste on fluorine tin oxide (FTO) substrate was done by 

Doctor-blade technique. TiO2 film was annealed at 550 °C for 30 minutes 

and after annealing immersed in dye solution for 24 hours, to get photo 

electrode (anode). Platinum (Pt) paste was deposited on FTO substrate and 

annealed at 450 °C for 30 minutes to get counter electrode (cathode). 

Finally, photo and counter electrodes were assembled in sandwich form 

with electrolyte injection through holes. Also, we improve the performance 

of DSSC by studying the effects of the following parameters: TiO2 

thickness, concentration of N719 dye, mixture dyes (N719 and Z907), use 

TEC- 8 Ω substrate and adding gold nanoparticles, prepared by pulsed laser 

ablation in liquid, to the dye.     

   UV-Vis spectra results show that the absorption of DSSC was enhanced 

with dyes mixture, adding Au NPs and the increase in dye concentration, as 

well as the absorption of TiO2 film increased with increasing annealing 

temperature. 

    The optical direct transition band gap (Eg) of the TiO2 films has been 

found to increase from 2.30 eV to 3.12 eV with increasing temperature. 

   XRD results confirmed that all the prepared of TiO2 films are in anatase 

phase and the highest peak was at (101) plane.  

   (AFM) results show that the roughness and root mean square for TiO2 

films decrease with increasing annealing temperature. SEM image for TiO2 

film proves that particles are spherical in shape and average size about 20-



40 nm. TEM image of Au NPs confirms that particles are spherical with 

particle size about 50 nm.  

   The photo current density-voltage (J-V) curves of  fabricated DSSC under 

conditions (50 mW/cm2) illustrate that the efficiency enhanced about 92 % 

with our optimum parameters as TiO2 thickness is 20 µm, dye mixing, 

added Au NPs to Z907 dye, dye concentration of 0.5 mM and substrate 

resistance of 8 Ω.   

   The incident photon-to-current conversion efficiency (IPCE) 

measurement showed that DSSC has high conversion efficiency. Also, it is 

found that DSSC has high transparency.  

  



 

ةالخلاص  

 

عملها  . اساس مبدأخلايا الشمسيةلل الجيل الثالث من انواع هي المتحسسة الخلية الشمسية الصبغية     

 . كهربائية حويل ضوء الشمس الى طاقةهو ت

 قاعدةعلى التيتانيا  عجينة وذلك بترسيب متحسسة شمسية صبغية يافي هذا البحث, تم تصنيع خلا    

FTO 550 ةحرار ةبدرج التيتانيا غشاءتم تلدين  . الطبيب بواسطة تقنية شفرة ºC وبعد  دقيقة  30 ةلمد

تم ترسيب   .الانود(للحصول على القطب الضوئي ) ساعة  24ةلمد الصبغةلدين يغُمر في محلول الت

ول على القطب للحص دقيقة  30لمدة ºC 450 ةحرار ةرجلدن بدتُ و  FTO قاعدة على البلاتينعجينة 

مع حقن الالكتروليت من خلال متقابل الانود والكاثود بشكل  ا(. اخيرًا, يربط قطبالعاكس )الكاثود

: تيةالآ المعلمات تأثيرات بدراسة المتحسسة تم تحسين اداء الخلية الشمسية الصبغية الفتحات. وكذلك

 دةاستخدام قاعو (Z907و  N719مزج الصبغات )و N719 تركيز صبغةو سمك غشاء التيتانيا

TEC- 8 Ω  استئصال نبضات الليزر في السائل قنيةبت المحضرة ,جسيمات الذهب النانوية واضافة ,

 .الى الصبغة

 صية للخلية الشمسية الصبغيةتوضح ان الامتصاالمرئية  − طيف الاشعة فوق البنفسجية نتائج    

وكذلك  تركيزالصبغة زيادة معو جسيمات الذهب النانوية اضافة و بمزج الصبغات تتحسنالمتحسسة 

 التلدين. لغشاء التيتانيا تزداد بزيادة درجة حرارة الامتصاصية

 3.12  الى eV 2.30 التيتانيا نجدها تزداد من  لاغشية (Egللانتقال المباشر ) صريةالب فجوة الطاقة    

eV التلدين حرارة بزيادة درجة . 

عند  كانت على قمةأو anataseهي في طور المحضرة  التيتانيا ةاغشي جميع ان  XRDنتائجاثبتت     

 . ( (101مستوي

 تقل  التيتانيا لاغشية ومعدل الجذر التربيعي ةالخشونان  AFM)) هالذري ةمجهر القونتائج اوضحت      

  سيماتجتثبت ان ال لغشاء التيتانيا (SEM) سح الضوئيامجهر الم صورة .دينلالت حرارةبزيادة درجة 

 TEM)) النافذ المجهر الالكتروني صورة .nm 40 − 20حوالي  هامعدل حجم الشكل كروية

 . nm 50حوالي يبلغ بحجم حبيبي و الشكل كروية سيماتالج انتؤكد  لجسيمات الذهب النانوية

 تحت شروط ) قدرة لخلايا المصنعة(  لJ-V curves) يةتالفول –منحنيات كثافة التيار الضوئي     

بأفضل مَعلمات : سمك   29 %تتحسن بحوالي  ( توضح ان الكفاءةmW/cm 250) الضوء الساقط



تركيز  و Z907 جسيمات الذهب النانوية الى صبغة اضافةو مزج الصبغاتو µm 20التيتانيا هو 

 . Ω 8 مقاومة قاعدةو mM 0.5 ل  الصبغة

 ةكفاء اله المتحسسة الخلية الشمسية الصبغية تحول الفوتون الساقط الى تيار يوضح انة قياس كفاء

 .   لها شفافية عالية المتحسسة كذلك نجد ان الخلية الشمسية الصبغية.  ل عاليةيحوت
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1-1 Introduction  

    With the ever increasing population of the earth, the demand for energy 

becomes the most important problem for the next 50 years. Most energy is 

provided at present by burning fossil fuel, but the extensive usage of fossil 

fuel produces also a greatly increased concentration of atmospheric CO2 that 

causes global warming. A search for a clean and sustainable source of energy 

free of carbon has therefore become an important issue for scientists. The 

most obvious source is the sun [1]. Solar energy is expected to play a crucial 

role as a future energy source. More solar energy strikes the earth in one hour 

(4.3×1020 J/hour) than all the energy consumed on the earth in a year 

(4.1×1020 J/year) [2] Solar energy provides clean abundant energy and is 

therefore an excellent candidate for a future environmentally friendly energy 

source.  

    There are various types of solar cells that convert sunlight into electrical 

energy such as silicon solar cell and thin film solar cell. For example, dye 

sensitized solar cell (DSSC). The DSSC is the third generation of solar cell 

which has been developed by O’Regan and Gratzel in 1991 [3] using 

nanocrystalline semiconductor oxide material sensitized by a ruthenium (Ru) 

dye enabled a paradigm shift in the field of solar energy conversion 

technology [4]. Due to the pioneer work of Gratzel, the DSSC is also known 

as Gratzel cell [5].  

    Unlike the common solid state solar cells based on crystalline silicon, the 

DSSC does not depend on the principle of a p-n junction for its basic 

operation [6]. The DSSC uses dye molecules adsorbed on the nanocrystalline 

oxide semiconductors such as TiO2 to collect sunlight. Therefore the light 

absorption (by dyes) and charge collection processes (by semiconductors) are 

separated, mimicking the natural light harvest in photosynthesis. However, 
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DSSC has become one of the important and promising technologies in 

photovoltaic field [7], due to low material cost, simple fabrication process, 

high energy conversion efficiency as compared to other thin-film solar cell 

technologies and low toxicity to the environment [8]. DSSC consists of four 

main components: a nanostructured semiconductor (typically TiO2), a dye- 

sensitizer to absorb visible light, an electrolyte (typically contain iodide and 

triiodide) and counter electrode (typically Pt) [9]. Different parameters affect 

efficiency of the DSSCs: types of materials used as electrolyte, dye and 

electric contact, and synthesis method used to obtain these materials [7].   

    The DSSC can be classified as a photoelectrochemical (PEC) solar cell due 

to its utilization of photons, charges, and electrolyte for its basic operation [6]. 

Typically, high power conversion efficiencies (𝜂) of more than 11 % have 

been achieved by using ruthenium complex and acetonitrile based electrolytes 

[10]. 

    The advantages of DSSC are that it can be engineered into flexible sheets, 

low cost of sensitization material production, ease of fabrication and low 

process temperature. The performance of the DSSC is highly dependent on the 

sensitizer dye and wide bandgap material such as TiO2, ZnO and Nb2O5 [11]. 

 

1-2 Literature Review 

    In 1991, Oregan and Gratzel, fabricated DSSC with a suitable thick TiO2-

film immersed with a solution of Ruthunium dye to sensitize the substrate for 

collecting the light. Better current density (greater than 12 mA cm-2) was 

obtained. The energy conversion efficiency was 7.1-7.9 % in simulated solar 

light and 12 % in diffuse daylight [12]. 



 
 Introduction and Literature Review                         Chapter One  

 

 

3 
 

    In 1997, Usami reported a theoretical study of application of multiple 

scattering of light to a dye sensitized nanocrystalline photoelectrochemical 

cell. The cell effectively confines incident light in the thinner dye sensitized 

film by multiple scattering from dispersed TiO2 particles at the bottom and 

total reflection between the inserted TiO2 film and the glass substrate at 

surface. Under optimal scattering conditions, it was found that the 

backscattered intensity is maximized when the backscattering angle is equal to 

the critical angle of reflection at the surface. The optical confinement is also 

effective for long wavelength light [13].  

    In 1999, Tennakone et al.,  prepared dye sensitized solar cell  (DSSC) from 

a porous film consisting of a mixture of tin and zinc oxides sensitized with a 

ruthenium bipyridyl complex suppresses recombination of the photo generated 

electrons and dye cations. It was found that short circuit photocurrent was 

22.8 mA/cm2, open circuit voltage was 670 mV and conversion efficiency was 

8 % in direct sunlight (900 W/m2) [14]. 

    In 2001, Lindstrom et al., fabricated the DSSCs by new method, the method 

was summarized with manufacturing a nanostructured porous layer of a 

semiconductor material at room temperature. The porous layer is pressed on a 

conducting glass or plastic substrate. The method compresses the particle 

layer to form a mechanically stable, electrically conducting, porous 

nanostructured film. Overall, solar to electric conversion efficiencies of up to 

5.2 % at 1 sun using plastic substrates have been obtained [15].   

  In 2002, Boschloo et al., prepared dye sensitized solar cell (DSSC) with 

using Degussa P25 TiO2 powder, red dye (Ru(dcbpy)2(SCN)2), black dye 

(Ru(tcterpy)(SCN)3) and an electrolyte were tested using standard 

photoelectrochemical techniques. It was found that the average overall 

efficiency of small open cells sensitized with the red dye on plastic substrates 
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was 4.5 % (100 W m−2). In a direct comparison, red and black dye gave about 

the same efficiencies [16]. 

    In 2003, Wang et al., fabricated and enhanced performance of dye 

sensitized solar cells (DSSCs) by using Co-grafting amphiphilic sensitizer. 

The results indicated that enhanced in short circuit photocurrent was 15.2 mA 

cm-2, an open circuit photovoltage was 764 mV, and a total power conversion 

efficiency was 7.8 % under simulated full sunlight when DSSCs containing 

Co-grafting [17]. 

    In 2004, Wang et al., studied the influence of titania photoelectrode 

morphology on the energy conversion efficiency of N719 dye-sensitized solar 

cell. It was found that the energy conversion efficiency of N719 dye-

sensitized solar cell has improved significantly from 7.6 to 9.8 % by tuning 

the film structure from monolayer to multilayer [18]. 

    In 2006, Bandara and Weerasinghe, designed DSSC with high efficiency 

using coupled dye mixtures [Ru(2,2-bpy-4,4'-dicarboxylic acid)(NCS)2] and 

[Ru(4,4',4''-tricarboxy-2,2;6,2''-terpy)(NCS)3]. It was found that short circuit 

current density (JSC) of 10.2 mA/cm2, conversion efficiency (ɳ) of 2.8 and 

incident photon to current conversion efficiency (IPCE) 50 % while 

broadening the spectral sensitivity of the cell for multiple dye system. When 

single dye Ru(4,4-bis(carboxy)-bpy)2(NCS)2] or [Ru(2,2',2''-(COOH)3-

terpy)(NCS)3] was used, cell efficiencies of 1.7 and 1.2 were observed 

respectively [19]. 

    In 2006, Hore et al., studied the influence of thin TiO2 layer with different 

scattering layer on the efficiency of DSSCs. It was found that JSC increased 

due to inclusion of scattering layers [20]. 

    In 2007, Lee et al., fabricated dye sensitized solar cells (DSSCs) using TiO2 

coated multi-wall carbon nanotubes (TiO2-CNTs). It was found that the TiO2-

CNTs content (0.1 weight %), the cell showed increase ∼50 % in conversion 
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efficiency, which is attributed to the increase in short circuit current density 

(JSC). The enhancement in JSC occurs due to improvement in interconnectivity 

between the TiO2 particles and the TiO2-CNTs in the porous TiO2 film [21].  

    In 2008, Chou et al., improved performance DSSC by using electrodes that 

consist of TiO2 with addition of indium doped tin oxide (ITO) or fluorine-

doped tin oxide (FTO) nanoparticles [22]. 

    In 2009, Sakurai et al., fabricated and enhanced the efficiency DSSC by 

using ClO4
− -poly (3,4-ethylenedioxythiophene)/TiO2/FTO (ClO4−-

PEDOT/TiO2/FTO) counter electrode (CE) in dye sensitized solar cells 

(DSSCs) is fabricated by using an electrochemical deposition method. It was 

found that the current-voltage (I-V) measurement reveals that the photocurrent 

conversion efficiency (ɳ), fill factor (FF) and short-circuit current density (JSC) 

of DSSCs with a ClO4
−-PEDOT/TiO2/FTO CE increased compared to DSSCs 

without ClO4
−-PEDOT/TiO2/FTO CE. The enhanced performance of the 

DSSCs is attributed to the higher JSC arising from the increase of active 

surface area of ClO4− -PEDOT/TiO2/FTO CE [23]. 

    In 2009, Huynh et al., improved DSSCs performance by using TiO2 thin 

film prepared by doctor-blade method. It was found that the dye sensitize solar 

cells prepared with TiO2 thin film shows its superior photovoltaic performance 

at air mass 1.5 (AM 1.5), open circuit voltage (VOC) was 0.77 V, JSC was 18.2 

mA/cm2, FF was 0.50 and efficiency (ɳ) was 7.0 % [24].  

    In 2010, Bazargan et al., fabricated flexible DSSCs using a new type 

counter electrode which prepared with an industrial flexible copper (Cu) sheet 

as substrate and graphite as the catalytic material which was sprayed by 

sprayed method. The results indicates that DSSCs fabricated with new type 

CE show higher solar to electricity conversion efficiency. The respective 

values are 5.29 % and 3.38 % for the graphite/ITO polymer based devices 

[25]. 
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    In 2010, Lee and Kang, studied the properties of nanoporous structured 

TiO2 and its application to dye-sensitized solar cells (DSSCs). From the results 

they found that the energy conversion efficiency (ɳ) of the DSSC prepared 

from nanoporous structured TiO2 was approximately 8.71 % with the N719 

dye under 100 mWcm−2 simulated light [26].   

    In 2011, Xia Wu et al., prepared TiO2 nanosheets films with various 

thicknesses (5-20 μm) by Doctor-Blade technique and they studied the effect 

of film thickness on the performance of dye sensitized solar cells (DSSCs) by 

I -V characterization. They showed that the optimized DSSCs performance 

was 8.39 % when 15 μm [27].  

    In 2011, Tsai et al., enhanced the efficiency DSSCs by using Graphene-

TiO2 composites as working electrode. It was found that the increasing of the 

graphene content leads to increase the amount of dye absorption [28]. 

     In 2012, Lee et al., enhanced the efficiency of dye-sensitized solar cells 

(DSSCs) by combining TiO2 nanotubes (TNTs) and nanoparticles. The 

incident photocurrent conversion efficiency was measured using a solar 

simulator and it was found to be (100 mW/cm2).  It was found also that 

DSSCs based on TNT/TiO2 nanoparticle hybrids showed better photovoltaic 

performance than cells made purely of TiO2 [29]. 

    In 2012, Ole et al., fabricated DSSCs based on photoelectrodes synthesized 

via Horizontal Vapor Phase Crystal (HVPC) Growth Technique.  

Nanostructured TiO2 was first synthesized on glass substrates at growth 

temperatures of 1000 ºC, 1100 ºC, and 1200 ºC with varying substrate distance 

from the bulk powder. FTO was used to deposit nanostructured TiO2 for the 

photoelectrodes of the DSSCs employing the optimum substrate distance 

identified by SEM analysis. Bixin dye extracted from Annatto was utilized as 

a low-cost sensitizer and a graphite coated FTO as counter-electrode. All the 

DSSCs with photoelectrode fabricated by HVPC growth technique achieved a 
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relatively large open-circuit voltage (VOC) of 387 mV, 427 mV, and 412 mV 

for growth temperature of 1000 ºC, 1100 °C, and 1200 °C respectively [30].  

    In 2012, Karthick et al., prepared TiO2 pastes from commercial P25 

titanium oxide powder (sample X) and titanium isopropoxide (sample Z)  

using a hydrothermal technique and also fabricated DSSCs. FTO glass is used 

as substrate for deposition of the pastes. The coated films were sintered at 500 

ºC for 30 minute and characterized by X-ray diffraction (XRD), fourier  

transform infrared (FTIR), ultraviolet visible (UV-Vis), scanning electron 

microscope (SEM), transmission electron microscope (TEM) and IV studies. 

XRD results confirmed that both of anatase and rutile phase were found in the 

film from sample X but only anatase phase were formed from sample Z. The 

lattice parameters of sample X is a = 3.789 Å and c = 9.526 Å and those of 

sample Z is a = 3.786 Å and c = 9.508 Å. Also, it was found FT-IR studies 

showed that there is no precursor residue present in both the sample after 

sintering. The UV-Vis spectrum indicates the amount of dye adsorbed on TiO2 

particle. It was found that the short circuit current (JSC), open circuit voltage 

(VOC) and conversion efficiency (ɳ) are 11.34 mA/cm2, 0.7111 V and 5.7 % 

respectively, which is high for DSSC prepared by using sample Z compared to 

sample X [31].  

    In 2013, Guo et al., prepared and enhanced the properties of DSSCs by 

using differing amounts of silver nanoparticles (Ag NPs) on TiO2. The results 

indicated that JSC was 10.19 mA cm-2, VOC was 698 mV and photoelectric 

conversion efficiency was 5.33 % when the Ag NPs addition was 0.15 wt % 

[32]. 

    In 2013, Oladiran and Olabisi, fabricated DSSC with using FTO glass as the 

substrate with copper metal attached to the surface, eosin blue as sensitize, 

lemon juice as electrolyte and ZnO nanoparticles as photoelectrode. The 

nanostructured ZnO was synthesized by precipitating Zn nitrate hexahydrate 
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with NaOH which was characterized structurally using XRD and optically 

with a UV-Vis Spectrophotometer. It was found that the DSSC has fill factor 

was 0.85 and efficiency was 0.15 % [33].   

    In 2014, Deepak et al., fabricated DSSCs module by spray pyrolysis 

deposition (SPD) method of a TiO2 colloid having similar to 10 nm sized TiO2 

nanoparticles. It was shown that this the process was first optimized for cell 

level fabrication, and the parameters (mainly the thickness) obtained from the 

study were subsequently used for module level fabrication. It was found also 

that the best efficiency obtained at the cell level (area 0.2 cm2 and thickness of 

12 mm) was 7.79 % and that for the (12 cm × 12 cm) module was 3.2 % [34]. 

    In 2014, Di Gu et al., studied the effect of addition of the suitable molecular 

weight of polyethylene glycol (PEG) of DSSC anode on its efficiency. It was 

found that when adding PEG of molecular weight 2000, the TiO2 thin film 

electrode has the best performance, subsequently, the DSSC enhancement 

performance [35]. 

   In 2014, Hammadi and Naji, studied the effect of dye concentration and 

added acid to the dye solution on optical properties of hibiscus sabdariffa 

organic dye used in the dye-sensitized solar cell. The results showed that the 

acidic environment of the Hibiscus sabdariffa dye solved in acetone has an 

important effect on the spectral properties of such dye. Adding acid to the dye 

solution caused to decrease its absorbance in the range 400-800 nm and 

noticeable decrease was shown in the range 550-700 nm when the 

concentration of the dye got higher [36].  

     In 2015, Gomesh et al., fabricated DSSC with the usage of recycled 

materials and organic dye such as graphite from batteries and organic dye 

from rose extract. The study focused on electrical performance and 

characteristic of the fabricated TiO2 solar cell based on the graphite coating 

thickness. The results were investigated in terms of fill factors, solar cells 
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efficiency and UV-Vis absorption. Result showed that thinner layer of 

graphite coating has good potential as an alternative counter electrode material 

[37]. 

    In 2015, Uddin et al., prepared and studied the properties of DSSC using 

natural dye extract from red amaranth as sensitizer. It was found the best light 

to electricity conversion efficiency was obtained when sensitization time of 

electrode was 30 minutes and dyes were extracted by acetone in crude form. 

Subsequently, the DSSC generated maximum voltage 0.492 V, short circuit 

current density 0.78 mA/cm2 and cell efficiency 0.22 % [38]. 

    In 2015, Sedghi and Miankushk, studied the effect of thickness of TiO2 

electrodes on the performance of dye-sensitized solar cells. TiO2 electrodes 

were characterized by SEM, optical microscope (OM), FTIR, thermal 

gravimetric analysis (TGA), and also cell performance was measured by a 

solar light simulator at an intensity of 1000 W.m-2. It was found that 

increasing the thickness of the TiO2 films led to absorption of the N719 dye 

increased, so that η of 7.51 % was obtained [39]. 

    In 2015, Hussein, fabricated three types of DSSC [pure TiO2 cell (TiO2 

only), bare TiO2 cell (TiO2 sensitized by Curcumin dye) and treated TiO2 cell 

(TiO2 HCl TiCl4 sensitized by Curcumin dye)] and improved performance of  

dye sensitized solar cell (DSSC) by utilization natural Curcumin dye extracted 

from Curcuma longa plant (Turmeric) as photosensitizer. It was found that the 

bare TiO2 cell has achieved the highest power conversion efficiency with 

value of 1.15 % in comparison with (treated and pure) TiO2 cells [40].  

      In 2016, Li et al., fabricated flexible DSSC modules on plastic substrates. 

It was shown that the conversion efficiency was maximum (~ 30 %) for the 

flexible DSSC modules with series connection [41]. 

    In 2016, Pirhadi et al., fabricated dye sensitized solar cells (DSSCs) with 

single layer and double layers photoanode. It was found that the DSSCs with 
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double layers photoanode resulted higher efficiency compared to DSSCs with 

single layer photoanode. The photovoltaic characteristics of DSSCs with 

double layers photoanode were 734 mV, 13.16 mA/cm2, 62 % and 5.96 % for 

VOC, JSC, FF and efficiency respectively [42]. 

    In 2016, Jaber et al., fabricated and enhanced the performance of DSSC by 

using gold nanoparticles (Au NPs). Au NPs prepared by laser ablation in 

liquid (PLAL) method at 750 mJ energy and 90 pulses.  They have been added 

to [RuL2(NCS)2]: 2TBA (L=2,2’-bipyridyl-4,4’-dicarboxylic acid; TBA=tetra-

n-butylammonium) (N719) dye to form (Au-N719) mixture. TiO2 paste was 

deposited on FTO substrates and immersion in a mixture dye and Au NPs. 

The UV-Vis data show high absorbance of Au NPs+N719 dye compared to 

N719 dye only. Scanning electron microscope shows spherical Au NPs with 

particle size about (50-60) nm. The results indicated that the relative increase 

of short circuit current density and open circuit voltage after adding Au NPs 

was about 76 % and 6.7 % respectively. The results indicated that the total 

photon to current energy conversion efficiency for the standard DSSC is 1.75 

while its 2.8 of the enhanced DSSC with gold NPs. The maximum 

enhancement is about 60 % under illumination (105 mW cm-2) [43]. 

    In 2016, Salman and Agool, prepared ZnO nanoparticles by laser ablation 

technique and fabricated dye-sensitized solar cell (DSSC) from ZnO 

nanoparticles using electrostatic deposition technique. From the results, they 

found that the ZnO nanoparticle had crystalline wurtzite phase. Also, 

Transmission electron microscopy (TEM) image illustrated that the ZnO 

nanoparticles were spherical in shape with an average size of about 37 nm. 

The fabricated ZnO-DSSC had a fill factor of 0.29 and conversion efficiency 

of 0.0016 % [44]. 
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    To the best of our knowledge, no previous studies have been conducted 

about the effect of adding (Au NPs) to (Z907 dye) (RuLL’(NCS)2 (L=2,2’-

bipyridyl-4,4’-dicarboxylic acid;L’=4,4’-dinonyl-2,2’-bipyridine) and dye 

mixtures on the efficiency of DSSC. 

    

1-3 Aim of the work 

 Fabrication of dye sensitized solar cells (DSSCs) and studying their 

properties. 

 Studying the effect of titanium thickness on DSSC efficiency. 

 Studying the effect of adding Au NPs on DSSC efficiency. 

 Studying the effect of dyes mix on DSSC efficiency. 
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2-1 Introduction  

    This chapter gives an introduction to the solar spectrum the generations 

of solar cells with special attention to the DSSCs, their structure and their 

working principle. It also deals with the theoretical aspects that are related 

to the solar cell performance and other important parameters. The chapter 

also includes the theoretical equations related to optical and structural 

properties of thin films. Pulse laser ablation in liquid technique is 

explained, as it is employed in this study to prepare Au NPs used to 

enhance the performance of DSSCs. Finally, the chapter presents some 

applications of DSSCs in advanced device technology and daily life 

equipments.  

 

2-2 The Solar Spectrum 

    The sun is a broad spectral range light source, emitting in the 

ultraviolet, visible and infrared regions of the electromagnetic spectrum. 

The irradiance defined as the power received from the sun per unit area, It 

is shown as a function of light wavelength in Figure (2-1) [45].  

    The irradiance of the sun can be well approximated by a black body 

at a temperature of 5800 K emitting according to Planck’s distribution 

[46]. At the earth’s surface, the solar spectrum is attenuated by 

absorption, scattering and reflection. Light is absorbed in the UV 

and visible region by oxygen (O2), nitrous oxide (N2O), methane 

(CH4) and ozone (O3) in the mid-infrared region by water vapor 

(H2O), and in the far infrared region by carbon dioxide (CO2). 

Absorption increases with the path length of the light through the 

atmosphere [47]. 

 



 Theoretical Part                                                  Chapter Two 

 

13 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2-1): Solar spectrum, and the spectrum of a black body of at T= 

5800 K [45]. 

 

    The Air Mass coefficient (AM) is used to account for   contribution of 

the atmosphere to the change in the solar spectrum. The Air Mass 

coefficient is defined as the ratio between the optical path length to the 

sun and the optical path length when the sun is directly overhead [48] and 

it is expressed through the formula [47]. 

 

              AM = 1/cosθe            …………………               (2-1) 

Where  

θe: is the elevation angle of the sun, (see Fig. 2-2). 
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                  Fig. (2-2): Designation of Solar Air Masses [45]. 

 

    When the sun is directly overhead, the Air Mass is 1 (AM1) and the 

irradiance reaching the Earth's surface is maximum [49], and the 

spectrum outside the atmosphere is designated by AM0. The standard 

spectral distribution of the light used for testing photovoltaic devices is 

AM 1.5 global [50] (elevation angle equal to θ = 48.2º and optical path 

1.5 times longer than in the case of AM1 light). For convenience, the 

standard spectrum is normalized so that the integrated irradiance of this 

spectrum per unit area and unit time is 1000 W/m2
 

(known as 1 sun 

illumination) [46].  

2-3 Solar Cells 

    A photovoltaic (solar) cell is a device which converts sunlight to 

electrical energy [49]. Compositional elements fundamental to solar cells 

are absorber material such as semiconductors, p-n junction and the metal 
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grid, as shows in figure (2-3) [45]. Its working principle depends on two 

parameters. The generation of current by absorbed incident light and the 

loss of charge carriers via process called recombination [51]. 

 

 

 

 

 

  

 
                                
 
 
 
 
     

                                

 

                               

                       

 

 

     Fig. (2-3): Cross-section of a basic solar cell [49]. 

 

2-4 Generations of Solar Cells 

    Solar cells are categorized into three generations based on their 

performance, cost effectiveness, the nature of the material and maximum 

conversion efficiency [52] as shown in Figure (2-4). 



 Theoretical Part                                                  Chapter Two 

 

16 
 

Fig. (2-4): The generations of solar cells [52]. 

 

2-4-1 First Generation Photovoltaics 

    The crystalline silicon is often referred to as the first generation 

photovoltaic technology. The first silicon solar cell was developed by 

Chapin, Fuller, and Pearson at the Bell Telephone Laboratories in the mid 

1950's [50]. The highest power-conversion efficiencies obtained to date 

are in first generation photovoltaics (PVS) [1]. 

    This generation of solar cells is characterized by relatively higher 

efficiency together with expensive production cost [11]. Today, the silicon 

solar cells dominate the photovoltaic (PV) market by 82 % and the 

recorded efficiency for a laboratory cell is 24.7 % [52], while the 

efficiency of the commercial crystalline silicon solar panels is in the best 
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case about 15 %. The main reason why silicon has dominated the PV 

market is that high quality silicon has been already produced at large 

quantities by the semiconductor industry [7]. 

2-4-2 Second Generation Photovoltaic  

    The second generation photovoltaics consist of thin film solar cell 

materials such as amorphous  silicon (a-Si), copper indium gallium  

diselenide  (CuInSe), cadmium telluride (CdTe) as shown in figure (2-4) 

[53].  

    Solar cells of this generation are based on low energy preparation 

techniques such as vapor deposition and electroplating [12]. Regardless of 

the semiconductor involved, the thin-film technology offers prospects for 

a large reduction in material costs by eliminating the costs of the single 

crystalline silicon wafer preparation. However, the maximum power 

conversion is lower due to the presence of defects in the films. Thin-film 

solar cells are cheaper but less efficient [54]. 

2-4-3 Third Generation Photovoltaics 

    Third generation solar cells refer to cells which do not fall into the first 

or second generations [55]. Solar cells based on dye sensitization referred 

to third generation photovoltaics, due to their excellent potential to deliver 

solar electric power at very low cost, which recently introduced into the 

consumer market [56]. 

    DSSCs involve simple fabrication procedures and have promising 

applications on flexible substrates [57]. Since DSSC fabrication cost is 

lower than a silicon solar cell, this technology has the potential to be used 

in many applications [58]. The solar cell development is shown in figure 

(2-5).  
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Fig. (2-5): Progression of efficiencies for a variety of PV technologies 

[53].  

 

2-5 The Structure of DSSC 

    The dye sensitized solar cell consists of six main components: 

transparent conductive oxide (TCO) coated substrate, TiO2 nanoparticles, 

dyes, electrolyte, and counter electrode covered with sealing gasket. The 

typical configuration is shown in Figure (2-6) [59]. 

  

2-5-1 Transparent Conductive Oxide Substrate (TCO) 

    TCO substrate has important features such as low electrical resistance, 

optical transparent, light weight, chemically compatible with other DSSC 

components, structurally stable, easy to manufacture, and inexpensive 

[60]. The electrodes of the standard DSSC are prepared from transparent 

conducting oxide substrates, between which the cell is assembled [61]. 

TCO substrate plays an important role in the DSSCs performance [62].  
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TCO substrates widely used in photovoltaic applications are ITO or FTO 

coated glass substrates [63]. 

                    Fig. (2-6): Typical configuration of a DSSC [54]. 

 

2-5-2 TiO2 Nanoparticles 

    Titanium dioxide (TiO2) also known as titanium oxide, titanium IV 

oxide and titania was first produced commercially in 1923 [64]. TiO2 

nanostructures  is one kind of the important materials that attracted more 

attention due to the structural, synthesis, electronic, and optical properties 

for dye-sensitized solar cells (DSSCs) [65]. It has been reported that 

particle size, shape, crystallinity, surface morphology, and chemistry of 

the TiO2 material are key parameters which should be controlled for 

optimized performance of the solar cell. TiO2 exists naturally in three 

crystalline forms; anatase, rutile, and brookite as shown in figure (2-7). 

Table (2-1) shows general properties of TiO2. The advantages of TiO2 

include high photosensitivity, high structure stability under solar 

irradiation, high efficiency, non toxic, eco friendly and low cost.  
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It is mainly applied as pigments, adsorbents, catalyst supports, filters, 

coatings, photoconductors, and dielectric materials [66].  

       

                         Table (2-1): General properties of TiO2 [67]. 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 
 

        

        Fig. (2-7): Crystal structures of (a) rutile, (b) anatase and (c) brookite [68]. 

 

Phase Crystal 

Structure 

Energy 

Gap                 

(Eg) eV at 

300 k 

Unit Cell 

(Å) 

Refractive 

Index 

Density 

(g/cm3) 

 

Anatase 

 

Tetragonal 

 

3.23 

a=3.7845 

c=9.5143 

z=4 

 

2.488 

 (λ=0.98 µm) 

 

3.89 

 

Rutile 

 

Tetragonal 

 

3.05 

a=4.5937 

c=2.9587 

z=2 

 

2.609 

(λ=0.595 µm) 

 

4.26 

 

Brookite 

 

Orthorhombic 

 

3.26 

a=5.4558 

b=9.1819 

c=5.1429 

z=8 

 

2.583 

(λ=0.634 µm) 

 

4.123 
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2-5-3 Dyes 

    Dyes are the key component [12] or regarded as the heart [69] of a 

DSSC. The function of the dye is to absorb the photons, and inject 

electrons into the semiconductor [12]. The process of dye loading is 

referred to as "sensitization" and it is achieved by immersing the work 

electrodes in dye solutions for a number of hours [69]. An ideal sensitizer 

for DSSCs should fulfil some essential characteristics, such as absorbing a 

wide range of radiation (400-920 nm), fast injection of electrons in the 

conduction band of TiO2 and high stability in order to allow redox cycles 

[60]. To achieve a high light-to-energy conversion efficiency in a DSSC, 

the dye molecules as attached to the semiconductor particle surface should 

have good properties of interfacial, practical, stability, kinetics, 

absorption, energetic [70].  

    Most metal based dyes for DSSCs application are ruthenium due to 

their high stability, broad absorption and relatively long lived excited state 

properties. Most dyes have a spectral response in the visible region (400–

770) nm. The purpose for using the dyes in the DSSC is to expand the 

absorption spectrum of the solar cell [69].          

     In DSSC, the Choice of the dye type is one of the factors that affect the 

efficiency.  

2-5-4 Electrolyte  

    The electrolyte is one of the important components of DSSC. There are 

three different kinds of electrolytes solid state, quasi‐solid state and liquid 

electrolyte. Liquid electrolyte is most used in DSSCs based on the charge 

mediator iodide/triiodide (I-/I-
3) redox couple in acetonitrile, a 

low‐viscosity volatile solvent and deeper penetration within the film pores 

[71].  
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The function of redox couple in electrolyte is collecting the electrons at 

CE, as well as regenerating the dye after electron injection into the 

conduction band of the semiconductor [7].  

2-5-5 Counter Electrode  

    The counter electrode is one of the important components in DSSC. 

The function of counter electrode in DSSCs is the reduction of I-
3 to I- 

[72]. Due to excellent electrical conductivity, catalytic activity, and 

corrosion resistance, platinum (Pt) is used as thin film deposited on the 

FTO substrate which typically serves as the counter electrode in DSSCs.  

    The advantage of metal counter electrode is that it can reflect the light 

transmitted by the photoanode which causes a second transversal of the 

dye-sensitized film, thereby enhancing light absorption for a given 

amount of dye [73]. 

2-5-6 Sealing Material  

    The sealing material is essential in fabrication of DSSCs to prevent the 

leakage of the electrolyte and the evaporation of the solvent. 

Photochemical and chemical stability of the sealing material against the 

electrolyte component, the solvent and iodine is required [63]. Several 

sealing materials have been used, such as epoxy and silicon [74]. For 

larger area applications, such as solar modules, the sealing material must 

also protect the conductor and prevent mass transport between the 

electrolytes of neighbouring cells [75].  

2-6 Operation Principle of Dye Sensitized Solar Cells 

(DSSCs) 

    Exposure of this solar-cell assembly to visible light leads to a sequence 

of reactions. Figure (2-8) shows the well known working mechanism of 

DSSC [76]. At the anode, the absorption of the light by the dye S leads to 

formation of its electronically excited state S* (equation 2-2). 
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                      S + hν           S*           …………………        (2-2) 

The excited electrons are injected into the conduction band of the 

semiconductor (TiO2) layer, resulting in the oxidation of the dye (S+) 

(equation 2-3). 

                         S*           S+ + e-
CB

         …………………        (2-3)                    

The injected electrons are transported through the mesoporous network of 

particles to reach the counter electrode to pass through the external circuit 

and wiring. The oxidized dye is reduced rapidly to the ground state by 

accepting electrons from iodide ion present in the electrolyte (equation 2-

4). 

                     2S+ + 3I-           2S + I-
3        ……………........   (2-4) 

At the counter electrode, the triiodide (I-
3) gets two electrons to generate 

three iodides (i.e the triiodide is reduced to iodide) (equation 2-5). 

                  I-
3+ 2e -              3I ˉ         …………………           (2-5)            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  
 

 

 

 

                               

                             

 

 

                     Fig. (2-8): Operation principle of DSSC [76]. 
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        If cited reactions alone take place, the overall effect of irradiation 

with sunlight is to drive the electrons through the external circuit, i.e., 

direct conversion of sunlight to electricity. The performance of DSSC is 

predominantly based on four energy levels of the components: the Fermi 

level of the TiO2 photo-electrode, which is located near the conduction 

band level, the excited state lowest unoccupied molecular orbital 

(LUMO) and the ground state highest occupied molecular orbital 

(HOMO) of the Ruthenium dye, and the redox potential of the redox 

mediator (I-/I-
3) in the electrolyte solution. The photocurrent obtained 

from the DSSC is determined by the energy difference between the 

HOMO and LUMO of the Ruthenium dye corresponding to the band gap 

for semiconductor materials [2,77]. 

 

2-7 Dye-Sensitized Solar Cell Performance 

    DSSCs have several important parameters such as short circuit current 

(ISC), open circuit voltage (VOC), optimum voltage (Vmax), optimum 

current (Imax), short circuit current density (JSC), incident photon to current 

efficiency (IPCE), fill factor (FF) and efficiency () which can be 

obtained from  photocurrent density-voltage (J-V) curve of DSSCs under 

illumination as shown in figure (2-9) [78]. 

2-7-1 Short Circuit Current (ISC) 

    Short circuit current is obtained from the cell when the load resistance 

is zero and output voltage is zero [79]. The short circuit current is equal to 

the absolute number of photons converted to hole-electron pairs.  ISC 

depends on the thickness of the electrode, the adsorbed dye molecule, 

diffusion electrolytes, dipping time, temperature of the cell, and dye 

loading [80]. 
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2-7-2 Short –Circuit Current Density (JSC) 

    The short circuit current density (JSC) is the short circuit current divided 

by the illuminated active area of the cell [81]. It is measured in the 

illuminated cell when load resistance and voltage is zero, as shown in 

figure (2-9). It is dependent on several factors such as the light intensity, 

injection efficiency, light absorption and regeneration of the oxidized dye 

[82]. Current density (J) is commonly used instead of current (I) because 

it enables the comparison of devices with different TiO2 active areas. The 

JSC can be calculated according to equation (2-6) [83]: 

 

                 JSC = 
            𝐈𝐬𝐜              

𝓐
           …………………..          (2-6) 

Where  

𝒜: is the effective area of the solar cell. 

ISC: is the short circuit current.  

2-7-3 Open-Circuit Voltage (VOC)   

    Open-circuit voltage is the maximum voltage available from a solar 

cell and it is obtained when a load with infinite resistance and the output 

current is zero, as shown in figure (2-9). It depends on the band gap of 

semiconductor, redox potential, and the ground state of the dye molecule. 

In dye sensitized solar cell, open circuit voltage (VOC) can be nearly 

estimated by the difference of redox potential and Fermi level of TiO2. 

For DSSC the VOC is given by: 

      

     VOC = 
𝑬𝑪𝑩

𝒒
 + 

𝐊𝐁 𝑻

𝒒
 𝐥𝐧 [

𝒎

𝑵𝑪𝑩
] - 

𝑬𝒓𝒆𝒅𝒐𝒙

𝒒
      ……………..       (2-7)                        

    Where, NCB is the effective density of states and 𝑚 is the number of 

electrons in semiconductor conduction band. The first two terms define 

the quasi-fermi level of TiO2 and Eredox is the Nernst potential of the redox 

mediator [79].  
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2-7-4 Maximum Voltage (Vmax) 

    Maximum voltage is the voltage at the optimum operating point at 

which the DSSC output power is maximum as shown in figure (2-9). It 

depends on bonds between the dye molecules and TiO2 film and dye 

temperature and time [84]. 

2-7-5 Maximum Current (Imax) 

     Maximum current is the current at the optimum operating point in 

which the DSSC output power is maximum, it depends on the intensity of 

incident light, and connection between material interfaces.  

Figure (2-9) shows an illustration of current-voltage characteristics of a 

cell under illumination [85]. 

 

 

 

 

 

 
  
 

    

 

 

 

 

 

 

 

 

 

 

 

        

 

 

Fig. (2-9): Typical voltage−current characteristics of a solar cell. 
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2-7-6 Fill Factor  

    The fill factor is an important parameter of the efficiency of the cell. It 

measures the ideality of the device. Fill factor (FF) is defined as the ratio 

of the maximum power output per unit area to the product of VOC and JSC 

(area within the green square divided by the area of the red square in 

Figure (2-9). Fill factor (FF) of DSSC is given by formula below: 

  

FF (%) =  
𝐉𝐦𝐚𝐱  𝐕𝐦𝐚𝐱

𝐉𝐬𝐜 𝐕𝐨𝐜
 =  

 𝐏𝐦𝐚𝐱  

   𝐉𝐬𝐜 𝐕𝐨𝐜        
 × 100% …………        (2-8)   

         

         Pmax = 𝐉𝐦𝐚𝐱  𝐕𝐦𝐚𝐱                     .……………...         (2-9)  
 

Where  

Pmax: is maximum power density. 

Vmax: is the voltage at maximum power point.  

Jmax: is the current density at maximum power point.  

    The fill factor ranges between (0-1), when internal resistance for cell is 

zero, the corresponding FF value is 1. The FF is influenced by series 

resistance (RS) from the internal resistance and shunt resistance (RSh) [86]. 

2-7-7 Power Conversion Efficiency (ɳ) 

    The efficiency of a solar cell is the ratio of maximum output power 

(Pmax) to the incident power (Pin). The maximum efficiency can be 

calculated from the J-V curve.  The efficiency (ɳ) is given by the 

following equation [87]: 

 

ɳ(%) = 
   𝐉𝐦𝐚𝐱 𝐕𝐦𝐚𝐱   

𝐏𝐢𝐧
 = 

  𝐏𝐦𝐚𝐱     

𝐏𝐢𝐧
 = 

    𝐉𝐬𝐜 𝐕𝐨𝐜  𝐅𝐅    

𝐏𝐢𝐧
×100 %  .……(2-10) 
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2-7-8 Incident Photon - Current Conversion Efficiency 

(IPCE) and Spectral Response 

    The incident photon to current conversion efficiency (IPCE) is one of 

the fundamental measurements of the performance of the solar cell. It is 

defined as the ratio of the number of electrons collected under short 

circuit conditions divided by the number of incident photons. IPCE takes 

into account the losses due to reflection, scattering and recombination. 

The IPCE is given by the following formula [86]: 

  

IPCE (%) = 
         𝟏𝟐𝟒𝟎   𝐉𝐬𝐜        

     𝝀𝒑𝒉  𝐏𝐢𝐧     
 ×𝟏𝟎𝟎      ………………   (2-11) 

Where 

𝜆𝑝ℎ: is the incident photon wavelength. 

JSC : is the short circuit current density.  

Pin  : is the incident power density. 

    IPCE values typically do not reach 100 % because light is reflected off 

the device, which accounts for a loss of approximately 8-10 % of all 

incident photons. An example of an IPCE curve generated from a DSSC 

test cell is provided in Figure (2-10) [88]. 

The spectral response (R) is defined as the ratio of the current generated 

by the solar cell to the power incident on the solar cell. The R is given by 

the following formula [89]: 

 

              R = 
     𝐉𝐒𝐂     

             𝐏𝐢𝐧        
            …………………          (2-12) 
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    Fig. (2-10): Example of an IPCE curve generated from a DSSC [88]. 

 

2-8 The Equivalent Circuit of Solar Cell 

     Figure (2-11) shows the equivalent circuit corresponding to a solar 

cell. A solar cell can be thought as a combination of diode and current 

source in the solar cell having two resistances, shunt resistance (RSh) and 

series resistance (RS). The cell would be an ideal cell if (RSh) to be 

infinitely large and (RS) is zero. 

 

 

 

 

 

 

 

 

Fig. (2-11): Equivalent circuit of a solar cell including series and shunt 

resistances [52]. 
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    The RS is composed of the electric resistance of the different materials 

in the cell and interfaces between them. The resistance of the TCO layer 

has the highest influence on resistance. The shunt resistance measures the 

resistance between the electrodes of the cell through undesirable paths 

such as from TiO2 film to electrolyte. It is desired to be as high as 

possible. The diode model does not represent the dye solar cell very well. 

The internal structure of the DSSC is more complex than that of silicon 

solar cell. But the concepts of the series and parallel resistances can also 

be applied to the DSSC. The resistance can be measured using impedance 

spectroscopy. Series and parallel resistances reduce the fill factor as 

shown in Figure (2-12). For an efficient cell we need RS to be as small and 

RSh to be as large as possible [90]. 

 

 

Fig.(2-12): Effect of (a) increasing series and (b) reducing parallel 

resistances [86].  

 

ShR Decreasing 
SIncreasing R 
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      The shunt resistance is used to describe the effect of leakage current 

in the solar cell's transporting layer. Obviously, the bigger the parallel 

resistance, the less the leakage current. (Particularly, the recombination 

in the condition band and trapped level in the transporting layer) [91]. 

    The series resistance is caused by the resistance of the cell material to 

current flow. The main contribution to this arises from the interface 

between TiO2 and electrode (TCO) and transporting layers [92].  

 

2-9 Optical Properties 

2-9-1 Absorbance (A) 

    Light absorption occurs when molecules or atoms absorb the energy of 

a photon of light, resulting reducing the transmission of light passing 

through a sample. The reduction of transmitted light is related to the path 

length of light traveled and concentration of the sample. Transmittance 

(T) is given by ratio of the intensity of the rays (IT) transmitting through 

the film to the intensity of the incident rays (Io) as follows: 

 

                 T = IT / Io                 ...………………..               (2-13)      

Where  

IT: is transmitted light intensity. 

Io: is incident light intensity. 

    The absorbance of the sample is defined as the negative log of the 

transmittance given by the relation (2-14) [93]: 

         

                A = −log10T            ………………….               (2-14) 

 Where  

T: represents the transmittance. 

A: represents the absorbance of the sample. 
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2-9-2 Optical Energy Gap (Eg) 

    Band gap is defined as the energy difference between the top of the 

valence band to the bottom of the conduction band. Electrons jump from 

valence band to a conduction band and this requires a specific minimum 

amount of energy for the transition. Measuring the band gap is important 

in the semiconductor and nano material industries [94]. 

    The optical energy gap (Eg) for semiconductors can be determined 

from the flowing relation [95]:  

 

                     αhν = P(hν – Eg)r     …………………         (2-15) 

Where  

P: is constant. 

hν: is the photon energy. 

α: is optical absorption coefficient.  

r: is the exponent depending on the type of optical transitions. 

    r is equal to 1/2, 2, 3/2 and 3 corresponding to direct allowed 

transitions, indirect allowed transitions, direct forbidden transitions , and 

indirect forbidden transitions, respectively [96]. The energy gap for 

allowed direct transition materials can be estimated by (Tauc's plot) 

plotting a graph between (α hv)2 and (hv) in eV, straight line is obtained 

and the extrapolation of this line to (α hv)2 = 0 gives the value of the direct 

band gap of the material [97].  

2-10 Structure of Thin Film      

    One of the important methods for studying the structure of bulk 

materials and thin films is the X-ray diffraction (XRD). Through this 

technique one can get information like crystal structure/phase, lattice 

parameters, defects, strain, and crystallite size of substance examined 

[98].  
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Bragg’s condition is achieved when the X-rays should be specularly 

reflected in any one atom plane and the reflected rays of consecutive atom 

planes should constructively interfere. The Bragg’s condition is given by 

[99]: 

                 𝑛 𝜆 = 2 𝑑hkl 𝑠𝑖𝑛𝜃            ………………….         (2-16) 

Where  

𝑛: is an integer number, representing the order of reflection.  

𝜆: is the wavelength of the incident X-ray. 

dhkl: is the interplanar spacing. 

𝜃: is Bragg’s angle. 

    From the X-ray diffraction patterns one can calculate the interplanar 

spacing (dhkl) using Bragg’s formula, while. the lattice constants (a,c) for 

the tetragonal structure can be calculated according to the following 

equation [98]: 

      
     𝟏      

 𝐝𝐡𝐤𝐥
𝟐  =  [

   𝐡𝟐+ 𝐤𝟐   

 𝐚𝟐 ]  +  
    𝐥𝟐     

𝐜𝟐      …………............        (2-17)                           

Where 

 hkl: are miller indices.  

 a and c: are lattice constants. 

The crystallite size (D) is calculated using Scherrer’s formula [100]: 

 

              D =  
     𝓚 𝝀        

        𝜷 𝐜𝐨𝐬 𝜽            
          ……………………    (2-18) 

Where 

𝒦: is Scherrer’s constant ≈ 0.9. 

λ: is the wavelength of incident X-ray radiation = (1.5406 Å for CuKα). 

β: is the full width at half maximum (FWHM) of the peak (in radians). 

𝜃: is Bragg’s angle. 
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2-11 Pulsed Laser Ablation in Liquid 

       In 1987, Patil performed the first experiment involving laser ablation 

in a liquid. He used a pulsed ruby laser to ablate an iron target in water 

[101].   

     Pulsed laser ablation in liquid (PLAL) is a simple and rapid technique 

used to fabricate nano-sized materials and it allows some control of 

nanonoparticles concentration, size, shape and aggregation by the 

variation of few parameters [102] including pulse duration, pulses 

number, pulse energy, laser wavelength, nature of liquid environments 

and laser frequency interacts with a bulk material [103]. Laser ablation is 

defined as the process of removing material from a solid surface by 

irradiating it with a laser beam. The generation of nanoparticles using 

pulsed laser ablation has many advantages compared to conventional 

methods, like the purity and stability of the fabricated nanoparticle 

colloids [104]. The main principle of laser ablation is the conversion of 

optical into thermal energy via electronic excitation. If the energy of the 

laser is high enough, the chemical bondings of the material can be 

destroyed, so that the material vaporizes and Au NPs may be ejected from 

the material [103]. Figure (2-13) shows the process of laser ablation. 

 

 

 

 

 

 

 

 

          Fig. (2-13): Preparation of nanoparticles by PLAL method. 
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2-12 Gold Nanoparticles 

    Nanoparticles (NPs), with diameters ranging roughly between 1 and 

100 nanometer, are natural bridges between molecules and extended 

solids and have attracted considerable interest due to their unique optical, 

electromagnetic, and catalytic properties, which can be used in many 

potential technological applications [105] including tailor made 

nanostructured materials for medicine and biosciences, energy technology 

(fuel cells and solar cells), also in photonics, and information technology. 

This type of particles show increased strength, hardness, higher electrical 

resistivity, enhanced diffusivity and reduced density [106]. Gold 

nanoparticles are another type of nanoparticles that have immense 

potential in biomedical field. There are chemically stable, non toxic and 

can be tuned to various shapes and sizes. One of the most important 

characteristics of Au NPs is phenomena surface Plasmon resonance (SPR) 

[107].  

    In case of gold, the nanoparticles can be produced in the form of 

colloidal suspensions in solutions either chemically or physically by 

pulsed laser ablation of a metallic target, the second procedure being 

advantageous in terms of purity of the final product [106]. The colloidal 

of Au nanoparticles nowadays have many applications due to their special 

physical and chemical behavior, they are different from bulk materials. 

Also, the properties of solution depend on the particle size, shape and 

liquid medium [108]. The increase in the particle size and aggregation 

lead to change in colloidal color, as illustrated in Figure (2-14). 
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        Fig. (2-14): Influence of particle size on colloidal color [100]. 

 

2-13 Surface Plasmon Resonance in Metallic 

    The term Plasmon is used to refer to plasma oscillations in metals, i.e. 

collective oscillation of conductive electron driven by light and the term 

resonance refers to a plasma oscillation excited by electromagnetic waves 

[109]. 

    Surface Plasmon Resonance (SPR) is a physical phenomenon occurring 

at metal surfaces [110]. When a metal particle is exposed to light, the 

oscillating electromagnetic field of the light induces a collective coherent 

oscillation of the free electrons (conduction band electrons) of the metal. 

This electron oscillation around the particle surface causes a charge 

separation with respect to the ionic lattice, forming a dipole oscillation 

along the direction of the electric field of the light. The amplitude of the 

oscillation reaches maximum at a specific frequency, called surface 

plasmon resonance (SPR). SPR in nanometer-sized structures is called 

localized surface Plasmon resonance (LSPR) [111].  
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The SPR induces a strong absorption of the incident light and thus can be 

measured using a UV–Vis absorption spectrometer. The SPR band is 

much stronger for plasmonic nanoparticles (noble metal, especially Au 

and Ag) than other metals. The SPR band intensity and wavelength 

depends on the factors affecting the electron charge density on the particle 

surface such as the metal type, structure, composition, shape, particle size 

and the dielectric constant of the surrounding medium. For gold and silver 

NPs, the resonance falls into the visible region of the electromagnetic 

spectrum [112]. A striking consequence of this is the bright colors 

exhibited by particles both in transmitted and reflected light, due to 

resonantly enhanced absorption and scattering. This effect has found 

applications for many hundreds of years, for example in the staining of 

glass for windows or ornamental cups [113].  

 

2-14 Applications of Dye-Sensitized Solar Cells 

    Due to the advantages of lightweight, flexibility and low cost, DSSCs 

are being developed into consumer applications. For example, DSSCs are 

integrated into portable electronic devices, bags, outfits and serving as 

charging stations. Samsung has manufactured DSSC battery to support 

mobile charging. 

    The performance of DSSC is less sensitive to the illumination 

conditions compared to the inorganic solar cells. Therefore, they are able 

to provide electricity to low-power electrical equipments even under low 

illumination conditions. 

    Due to the advantages of better performance in low and indirect 

illumination and easy installation, DSSCs are employed in building 

structures such as windows, walls and roofs to provide electric power for 

the building and save electric energy [114].   
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    The lightweight flexible DSSC modules which perform well under 

different light conditions are used in solar powered smoke detectors, 

calculators, keyboards, window blinds [115].                                                                                              
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3-1 Introduction 

    This chapter describes the materials and tools that used in the preparation of 

DSSC and the stages of fabrication of DSSC. Furthermore, the techniques used 

for characterization are presented including XRD, AFM, SEM, TEM, UV-Vis 

spectroscopy and I-V measurements. 

3-2 Experimental Work 

Figure (3-1) shows schematic flow chart of the DSSC preparation steps and the 

characterization carried out in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Fig.(3-1): The diagram of the experimental work. 
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3-3 Materials 

    Chemicals that were used to manufacture Dye Sensitized Solar Cells are 

summarized in table (3-1). 

                       Table (3-1): DSSC components from Dyesol company.  

No. Material Composition 

1- TEC 8 glass plates, (Dyesol 

Co., Australia) 

Type: Soda-lime, Conducting Layer: FTO 

(Fluorine doped tin oxide),Resistance: 8 Ω/sq, and 

Sheet Thickness: 3.2 mm 

 

2- TEC15 glass Plates, (Dyesol 

Co., Australia) 

Type: Soda-lime, Conducting Layer: FTO 

(Fluorine doped tin oxide), Resistance: 15 Ω/sq, 

and Sheet Thickness: 3.2 mm 

 

3- N719 Industry Standard Dye, 

(Dyesol Co., Australia) 

[RuL2(NCS)2]: 2TBA (L=2,2’-bipyridyl-4,4’-

dicarboxylic acid; TBA=tetra-n-butylammonium), 

C58H86N8O8RuS2 

 

4- Z907 Hydroph-obic Dye, 

(Dyesol Co., Australia) 

RuLL’(NCS)2 (L=2,2’-bipyridyl-4,4’-

dicarboxylic acid; L’=4,4’ dinonyl-2,2’-

bipyridine), C42H52N6O4RuS2 

 

5- 18NR-T Transparent Titania 

Paste, (Dyesol Co., Australia) 

 

Average Nanoparticle Size (active): ~20 nm 

6- PT1 Platinum Paste, (Dyesol 

Co., Australia) 

PT1 Platinum Paste is oil-based Australia 

7- EL-HSE High Stability 

Electrolyte, ( Dyesol CO., 

Australia)  

Redox couple: I-/I-
3  iodide/triiodide 

8- Low Temperature Thermoplaic 

Sealant, (Dyesol Co., Australia) 

DuPontTM Surlyn functionalised E/MAA resin 

 

9- Ethanol C₂H₅OH 
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3-4 Gold Nanoparticles (Au NPs) Preparation 

    The pulsed laser ablation in liquid system is employed to synthesize colloidal 

gold nanoparticles using a gold target and ethanol at room temperature. Figure 

(3-2) shows the actual photograph of the system used in the current study. 

    The gold target (purity of 99.99%) was fixed at bottom of glass vessel 

containing 2 ml of ethanol. The ablation was achieved focusing laser beam   

output of pulsed Nd: YAG laser (type DELIXI, DZ47-63, C10) operating with a 

repetition rate of 1 Hz and pulse width of 10 ns. Ablation is carried out with 

laser operating at 1064 nm wavelength at the fluence of 22.116 J/cm2. The 

number of laser shots applied for the metal target is 700 pulses. 

    The spot size of the laser beam on the target surface was 1.2 mm in diameter 

and the distance between the focusing lens and the metal target was 9 cm. The 

pulse energy was 250 mJ. In final process, the color colloidal gold nanoparticles 

result was violet.  

 

     

 

 

  

 

 

 

 

 

 

 

Fig.(3-2): Photograph of the experimental setup for laser ablation of gold in 

ethanol. 
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3-5 Preparation of DSSC  

    Figure (3-3) shows the flow chart of Dye-sensitized solar cell preparation. 

 

 

 

                  

 

 

 

 

                  

 

 

 

 

 

 

 

 

                

                   

                 Fig.(3-3): Flowchart of DSSCs preparation steps. 

 and annealing 

 and annealing 
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3-5-1 Glass Substrates Preparation  

    The typical substrate for making Dye Sensitized Solar Cells is a glass plate 

coated on one side with a Transparent and Conductive Oxide (TCO) layer. The 

TCO material is a thin layer of fluorine – doped tin oxide (SnO2:F), also called 

(FTO). In this work the two types of glass substrates are (TEC-8 Ω and TEC-15 

Ω) were used. 

    Before using the glass substrates, they were cut to pieces of the size of (2.5 cm 

× 2.5 cm) by glass cutter.  

    Then all glass substrates were cleaned in an ultrasonic bath for 5 minutes in 

distilled water and 5 minutes in acetone. Then, let to dry in air.   

 

3-5-2 Preparation of Working Electrodes (Photoanode) 

    For the preparation of the photoanode, Doctor-Blade method was used to 

deposit the titania (TiO2) paste. The thickness of titania layer is determined by the 

thickness of scotch tape which has a thickness of 10 µm placed on the two sides 

of the conductive face of substrate. Three different thicknesses were prepared by 

using one, two and three layers of tape. This tape can be easily removed from the 

glass without leaving traces of glue. The TiO2 paste was deposited on the 

uncovered area of the glass was until a reasonable homogenous layer was 

achieved to make a thin film. The large surface area allows for a greater amount 

of dye molecules to be absorbed, which will be of great importance during the 

test.  

    After depositing the paste, the scotch tape was removed and the films were left 

to dry for 30 minutes in a covered pertidish. Then, the TiO2 substrates were 

annealed in programmed electrical furnace (LABTECH DAIHAN, KOREA) at 

550 °C for 30 minutes to remove the viscous solvent and impurities. Figure (3-4) 

shows the steps of the preparation of the working electrode mentioned above. On 

observation the TiO2 electrode first turned brownish, sometimes releasing fumes 
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and turned white. This is a sign that the annealing process is completed. Then, the 

samples were allowed to cool slowly at room temperature to avoid cracking of the 

slides. The thickness of the annealed films was measured using Electronic Digital 

Micrometer and it was found to be 10, 20 and 30 μm. 

 

 

 

 

  

 

 

 

 

                                    

 

 

 

 

 

 

 

  Fig.(3-4): The preparation procedure of working electrode (a) scotch tape placed 

on the two sides of the conductive face of substrate, (b) the TiO2 paste was placed 

on uncovered area of the substrate, (c) applied doctor-blade method to deposition 

titanium paste, (d) and (e) the scotch tape was removed and the films were left  

under Pertidish and (f) the TiO2 substrates were annealed in programmed 

electrical furnace. 

a b 
c 

e f d 
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3-5-3 Preparation of Counter Electrodes (Cathode) 

     For the preparation of the cathode electrode, two holes with 1 mm and distance 

is 6 mm were drilled in the glass substrates which will be used as cathode to 

enable a later injection of electrolyte. 

The catalyst material used as the counter electrode for the DSSCs Platinum (Pt) 

paste deposited by Doctor- Blade method on the conductive face of (FTO) glass 

substrates. 

    Before using the prepared electrode, the substrate was annealed at 450 °C for 

30 minutes. Figure (3-5) shows the prepared counter electrodes used in the study.   

 

 

 

 

 

 

 

   

Fig.(3-5): Pt paste on FTO glass. 

 

3-5-4 Preparation of Dye Solutions 

    In this thesis organic dyes used are N719 and Z907. The molecular structure of 

these dyes is shown in figure (3-6). To prepare dye solutions, 0.0297 g and 0.022 

g of N719 and Z907 ruthenium dye powders were dissolved in 100 ml of ethanol 

to obtain dye solution concentrations of 0.25×10-3 M and 0.5×10-3 M 

respectively. The solutions were stirred for 30 minutes and stored in sealed 

container for 24 hours before use. The photoanodes were immersed in the dye 
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solutions, and then kept 24 hours on a dark place at room temperature to adsorb 

the dye molecules on to the TiO2 surface. All   samples were rinsed with ethanol 

to remove the dye residues. Finally, it was observed that the TiO2 electrodes 

turned to a maroon-black color after immersion. Figure (3-7) shows the steps of 

the dye electrode preparation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(3-6): Molecular structure of N719 and Z907 dyes. 

N719 

Z907 
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                                                       (b) 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig.(3-7): Preparation steps of dyed electrode (anode). (a) The photoanodes were 

immersed in the dye solutions, and then kept 24 hours on a dark place at room 

temperature to adsorb the dye molecules on to the TiO2 surface, (b) All   samples 

were rinsed with ethanol to remove the dye residues, (c) the TiO2 electrodes 

turned to a maroon-black color after immersion. 

a 

b 

c 
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3-5-5 Cell Assembly  

     The two electrodes were assembled into a sandwich structure using hot-

melted, with a thickness of 30 µm as the spacer. A square gasket was cut out of 

the sealant spacer material. The inner dimensions should match with the titania 

film, and the outer dimensions are 1 mm bigger on all four sides. The sealant 

gasket was placed around titania paste and the counter electrode was put on it 

while the Pt film faces the TiO2. Then, the cell that obtained placed on heater at 

120 ºC for 15 minute for well connected by using a hot-melted Surlyn film (30 

μm, Solaronix). 

Finally, the electrolyte was filled through the holes in the counter electrode by a 

pipette, and the holes were covered by plaster to prevent evaporation. This 

process is done at room temperature. Figure (3-8) shows the prepared DSSCs in 

their final form. 

                                            

 

 

 

 

 

 

 

 

 

 

                    

 

Fig.(3-8): Final form of DSSCs before test. 
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3-6 Characterization Techniques   

3-6-1 UV-Vis Spectroscopy 

    UV-Vis double beam spectrophotometer (Visible1800) made by (Shimadzu, 

Japanese Co.) shown in figure (3-9) was used for optical measurements including 

transmission and absorption spectra. The absorbance of dyes solutions with and 

without gold nanoparticles, gold nanoparticles solution and TiO2 films were 

measured over a spectral range from 300 nm to 700 nm. Absorption 

measurements were made with standard (1 cm × 1 cm) quartz cuvettes for 

solutions using ethanol as reference, while blank glass was used as reference for 

TiO2 electrodes. 

 

 

 

 

 

 

 

 

 

 

           

 

   

 

Fig.(3-9): UV-Vis spectrophotometer used in the current study. 
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3-6-2 X-ray Diffraction  

    Crystal structure and crystallite size of prepared TiO2 films were obtained by 

X-ray diffractometer (XRD- Shimadzu 6000, Japan) that operates at a current of 

(30 mA) and a voltage of (40 kV) with CuKα radiation, where λ=1.54056 Å. 

Figure (3-10) shows the actual photograph of the XRD instrument used in the 

present study.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. (3-10): X-ray diffraction instrument used in the present study. 

XRD patterns of the films were recorded with 2θ ranging from 10° to 80° for 15 

minutes.  

3-6-3 Scanning Electron Microscope (SEM) 

     The surface morphology of TiO2 films was characterized by scanning electron 

microscopy   JEOL (SEM, JSM-7000F) shows in figure (3-11), SEM images 

were obtained with applied acceleration electron voltage of 20 kV. 
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                       Fig.(3-11): SEM instrument used in this study. 

 

3-6-4 Atomic Force Microscope (AFM) Measurements 

    To visualize the surface morphology and roughness of TiO2 films coating on 

FTO glass substrate before and after annealing at 550 ºC atomic force microscope 

(SPM-AA3000) was used in contact mode. Figure (3-12) shows the AFM 

instrument used in the current study. 

 

 

 

 

 

 

 

 

 

 

                   Fig.(3-12): AFM instrument used in the current study.  



 Experimental Procedure                                              Chapter Three 
 

 
52 

 

3-6-5 Transmission Electron Microscopy (TEM) Measurements  

    The morphology, shape and size of Au NP aggregates were characterized by 

transmission electron microscope (TEM) type CM10 pw6020, Philips-Germany 

shown in figure (3-13). The images were obtained at an accelerating voltage of 60 

kV, with maximum magnification of 25000x-450000x. 

 

 

 

  

 

 

 

 

 

 

 

 

 

       

           Fig.(3-13) : TEM instrument used in characterizing Au nanoparticles.        

          

3-6-6 Current-Voltage Measurements 

    One of the most important measurements of a solar cell is the current-voltage 

(I-V) measurement. From the I-V curve many important parameters can be 

obtained including short-circuit current (ISC), open-circuit voltage (VOC), fill 

factor (FF) and the efficiency (η). To measure the electrical properties, voltmeter 

(UNI-T 50A), ammeter (UNI-T30B), variable resistance (1-100000 Ω), and 

halogen lamp (120 watt) were used as shown in figure (3-14). 
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Fig.(3-14): Schematic for electrical instrument used in the current study. 

 

3-6-7 IPCE and Spectral Response Measurements  

     To estimate the IPCE and the spectral response of DSSC, ammeter, power 

meter, halogen lamp and monochromator (Gobin-Yorn) were used as depicted in 

the schematic diagram shown in figure (3-15).  

    Initially, the solar cell was placed in front of the light source and the 

wavelength of the light was changed in the range (300-800) nm using 

monochromator while the current readings were recorded through the ammeter 

and the intensity of incident light was measured by the power meter.  

Lamp Halogen 
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The IPCE and the spectral response (R) were estimated using the data recorded 

above by employing equations (2-11) and (2-12) respectively. 

    

 

     

 

 

 

 

 

 

 

 

 

 

 Fig.(3-15): a and b represents schematic diagram to measure IPCE and R. 
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4-1 Introduction  

    In this chapter, all the results related to the absorption spectra of dyes, 

characterizations of TiO2 films and Au NPs and DSSCs measurements 

are presented and discussed.  

    

4-2 Optical Properties  

4-2-1 Absorption of Dyes 

       Figure (4-1) demonstrates the absorption spectra of N719, Z907 and 

their mixed solutions (1:1 v/v ratio) in the wavelength range of (350-800) 

nm. The UV-Vis absorption spectra show two absorption peaks at around 

386 and 526, 430 and 548, 396 and 528 nm, for N719, Z907 and their 

mixed solutions respectively. It can be also observed that the N719 dye 

shows the highest absorption, while Z907 dye shows the lowest 

absorption. 

 

     

 

 

 

 

 

 

 

 

 

 Fig.(4-1): UV-Vis absorption spectra of  N719, Z907 and their mixed 

solutions (1:1 v/v ratio).  
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4-2-2 Absorption Characterizations of Au NPs  

    Au NPs colloidal solution was prepared by PLAL method. Z907 dye 

solution was prepared with concentrations of 0.0125 mM and 0.025 mM. 

The Z907 dye solution (with concentration of 0.025 mM) was mixed with 

Au NPs solution to produce a solution with concentration of 0.0125 mM. 

 

 

 

 

 

 

 

 

 

 

  

Fig. (4-2): Optical absorption spectra of Z907 dye solution, Au NPs    

colloidal solutions and their mixed solution (1:1 v/v). 

  

    Figure (4-2) shows the optical absorption spectra for Au NPs colloidal 

solution, Z907 dye solution and their mixed solutions (1:1 v/v) in the 

wavelength range of (350-700) nm. From the figure, it is clear that Au 

NPs colloidal solution has single absorption peak located at round 530 

nm, due to surface plasmon resonance or spherical shape [116]. While, 

Z907 dye solution and the mixed solution have two absorption peaks 

located at 370 and 510 nm and 371 and 517 nm, respectively. It can be 

noticed that the optical absorption increases when Au NPs were added to 
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Z907 dye. This enhancement is attributed to the surface plasmon 

resonance of Au NPs.  

    It can be also observed the appearance of an absorption tail in the red 

zone of the Au NPs spectrum which is evidence of particle assembling 

and instability [117]. The concentration of Au NPs was estimated to be 

about 4.5 ppm from calibration curve [118]. 

 

4-2-3- Absorption of TiO2 Films 

    Figure (4-3) illustrates the UV–Vis absorption spectra of TiO2 films 

with thickness of 10 µm as-deposited and annealed at 550 ºC and 350 ºC 

for 30 minutes deposited on TEC-8 Ω substrates under ambient 

conditions. It can be noticed that the intensity of absorption increases 

with increasing annealing temperature in the wavelength (315−363) 

while it decreases in the visible region.  

 

 

Fig.(4-3): UV-Vis absorption spectra of TiO2 films at as-deposited and  

different annealing temperatures. 
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    Moreover, in the UV region, the absorption is very high in comparison 

with that of the visible region, due to which TiO2 can be used as UV 

blocker in inverted organic solar cells which avoid solar cells from 

degradation as UV rays have negative impact on the cells [119].  

When annealing temperature is increased, the absorption edge is shifted 

to a shorter wavelengths (high energy) and this result is in agreement with 

the results reported by Vorontsov who found that the absorption edge is 

shifted to a shorter wavelengths due to the quantum-size effect when the 

particle size was very small [120]. 

    The direct band gap of the TiO2 films was determined by plotting 

(αhν)2 vs. hν curves. The optical band gap Eg value is defined by 

extrapolation of the straight-line portion of the plot to zero absorption 

edge in a graph of (αhν)2 vs. hν as shown in Figure (4-4). From the figure, 

it was observed that direct optical band gap for annealed TiO2 films 

increases from 2.30 eV to 3.12 eV with the increase of annealing 

temperature and this result is in agreement with the results reported by 

Hadjoub et al. [121]. This increase attributed to the improvement of 

crystallinity of anatase phase and also due to the size quantization in 

nanocrystalline semiconductors [122]. A decrease of the crystallite size 

leads to the increase in the band gap energy and caused a gradually shift 

of the absorption edge towards a shorter wavelength. 

    Earlier reports shows the average value for absorption to be 385 nm 

and the corresponding band gap energy for bulk titania as 3.2 eV. The 

resulting blue shift of the absorption is due to the change of particle size. 

The quantity of photons reaching the core of a spherical particle depends 

on the size of the particle and the optical properties of the titania [123]. 

This size quantization occurs due to localization of electrons and holes in 

a confined volume of the semiconductor nanocrystallites, which are 
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typically in nanosize. This results in a change in energy band structure, 

with separation of individual energy levels and an increase in effective 

optical band gap of the semiconductor as compared with bulk [124]. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(4-4): (αhν)2 vs. energy curves of TiO2 films as-deposited and 

annealed at 350 °C and 550 °C. 
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4-2-4 Effect of Dye Type on DSSCs Absorption  

    DSSCs prepared by TiO2 film with thickness of 10 µm deposited on 

TEC-8 Ω annealed at 550 ºC for 30 minutes immersed in different dyes 

and their mixture with concentration 0.25 mM. Absorption spectra of 

DSSCs using different dyes and their mixture in the wavelength of 350-

750 nm are shown in figure (4-5).  

 

  

 

 

 

 

 

 

 

 

 

 

Fig.(4-5): UV- Vis absorption spectra of DSSCs using different dyes and 

their mixture. 

From the absorption spectra, it can be seen that DSSC with mixture dye 

has absorption higher compared to the other two cells. Due to the 

enhancement in absorption, one may expect certain enhancement in 

efficiency. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

350 400 450 500 550 600 650 700 750

A
b

so
rb

an
ce

  
(a

.u
.)

λ (nm)

DSSC-N719

DSSC-Z907

DSSC-(N+Z)



 Results and Discussion                                       Chapter Four 

 
61 

 

4-2-5 Effect of TiO2 Layer Thickness on the Absorption of 

DSSCs  

    Figure (4-6) shows the absorption spectra of DSSCs in the 

wavelengths range of (350-750) nm using 10, 20 and 30 µm thickness of 

TiO2 layer and N719 dye as sensitizer. It can be noted that DSSC with 

TiO2 film with thickness of 30 µm has higher absorption compared to 

other two cells in most of the spectral range due to the increase of dye 

adsorption and it could be explained by the enhanced loading of dye 

molecules on TiO2 film. 

 

 

 

 

 

 

 

 

 

 

Fig.(4-6): UV-Vis absorption spectra of  DSSCs at different TiO2 layer  

thicknesses. 

4-3 Structural Properties 

4-3-1 X-ray Diffraction Analysis 

      Crystalline characterizations of TiO2 films prepared by Doctor-blade 

technique on glass substrate were carried out by X-ray diffraction (XRD).  
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Figure (4-7) shows the XRD patterns of TiO2 films with thickness 10 µm 

which as-deposited at room temperature and annealed at 350 ºC and 550 

ºC for 30 minutes. From the figure, it was confirmed that all patterns are 

indexed to the anatase phase (i.e anatase pure) with polycrystalline 

structure [125] according to the ICDD standard card no. (21-1272) shown 

in figure (4-8). From the diffraction patterns, it was found that the as-

deposited film and the film annealed at 350 °C, exhibited characteristic 

peaks of anatase crystal planes (101), (004), (200), (105), (211) and 

(204), while in the film annealed at 550 °C, a very weak characteristic 

peak of anatase crystal plane (215) appeared, and this result is in 

agreement with the results reported by Hasan et al. [126]. The highest and 

strongest peak of all TiO2 films was found at 2θ ≈ 25.4º corresponding to 

(101) direction. 

 From the figure, it can be also observed that the crystallinity of TiO2 

films increases with increase in temperature up to 550 °C also observed 

broad peaks width. Relatively broad width of peaks of the XRD patterns 

implies crystallites are smaller in size [127].  

     The crystallite size of TiO2 film of (101) peak at 550 ºC was 

calculated by Scherrer’s formula given in equation (2-18) [128] and it is 

found to be 12.41 nm. The calculated crystallite size of TiO2 film 

annealed at 550 °C, it is less compare others. Hence 550 °C was chosen 

as the optimum annealing temperature for the synthesis of TiO2 

nanomaterials. It is reported that the anatase TiO2 with small size has 

shown best photocatalytic activity than rutile phase [129].       

    The lattice parameters a and c are calculated using equation (2-17) and 

they are given along with other XRD results in table (4-1). The calculated 

lattice constants a and c are found to agree well with the standard values 

(a = 3.781 nm and c = 9.51 nm) [130]. The results show that the 
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crystallite size decreases with the increase in annealing temperature and 

this result is in agreement with the results reported by Shim et al. [131]. 

The decrease in crystallite size leads to increase in the surface area of 

TiO2 film and resulting in an increase of dye absorption amount. 

 

 

 

  

 

 

  

 

 

 

                            

Fig.(4-7): XRD patterns of TiO2 films. 

 

 

 

                                     

 

 

 

 

 

Fig.(4-8): Standard card no.(21-1272) of TiO2. 
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Table (4-1): XRD results of TiO2 films. 

 

4-3-2 Scanning Electron Microscope (SEM) Analysis  

    The surface morphology of TiO2 film was characterized by SEM.                                     

Figure (4-9) displays the SEM image of (TiO2) film of thickness 10 µm 

which has been coated on the FTO glass after annealing at 550 ºC for 30 

minutes.  

    The SEM examination confirms a spongy shape with reduction in the 

number of open pores making easy for dye adsorption and electron 

transport [132]. The small particles of TiO2 film have large area and 

subsequently absorb more dyes. Subsequently, this may lead to improved 

DSSC performance [133]. The average particle size of TiO2 NPs is about 

20−40 nm. 

         

        TiO2 thin film 

 

 As-deposited 

 

Annealing 

at 350 ºC 

 

Annealing 

 at 550 ºC 

 

2Ө (deg) 

 

25.4007 

 

25.3983 

 

25.3720 

 

hkl 

 

101 

 

101 

 

101 

 

FWHM (rad) 

 

0.009319 

 

0.010327 

 

0.011456 

 

D (nm) 

 

15.252 

 

13.763 

 

12.406 

Lattice constant   

                             (a=b)                                  

(Å) 

                                    

                          (c) 

                                                    

 

3.781 

 

3.787 

 

3.781 

 

9.476 

 

9.466 

 

9.477 
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Fig.(4-9): SEM image of TiO2 film at 30,000X. 

 

4-3-3 TEM Analysis of Au NPs 

   To identify the particles size, shape and size distribution of Au NPs 

present in the prepared samples, they were characterized by transmission 

electron microscope (TEM). The TEM image and size distribution of Au-

NPs produced by PLAL method of a gold metal plate in ethanol is shown 

in figure (4-10). The TEM image confirmed that the particles are 

spherical in shape of nanosize [105]. It can be also observed that 

interconnect NPs lead to agglomeration. On the basis of the TEM image 

the size distribution of NPs was calculated. The precise size distribution 

of NPs is presented in Figure (4-10 b), and it is clear that the 

nanoparticles diameters are in the range of (10−90) nm. The average 

particle size was 50 nm. 
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Fig.(4-10): (a) TEM image  and (b) histogram corresponding to the  size 

distribution of gold nanoparticles produced by 1064 nm laser ablation of 

a gold metal plate in ethanol for ( 700 ) pulses. 
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4-3-4 AFM Analysis of TiO2 Thin Films 

    The surfaces morphologies of TiO2 films prepared by Doctor-blade 

method on FTO glass were studied by Atomic Force Microscope (AFM) 

technique. The 3-dimention (3-D) AFM images and distribution charts of 

as-deposited TiO2 film of 10 µm thickness and the TiO2 films annealed at 

350 ºC and 550 °C for 30 minutes in ambeient atmosphere are shown in 

figure (4-11).  

 

 

 

 

 

                                                           

 

 

 

 

 

 

 

 

 

                                                                  

 

 

Fig.(4-11):3-D AFM images and Granularity accumulation distribution 

charts of TiO2 films (a) as-deposited, annealed at (b) 350 ºC and (c) 550 

ºC. 
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    From AFM images, the surfaces were distinguished to have porous 

structure with lower roughness values and with increasing of annealing 

temperature [134]. The table (4-2) summarizes AFM parameters 

including grain size, roughness and root mean square values of all TiO2 

films. From the table, it can be observed that the surface roughness of the 

films decreases with increases the annealing temperature. The rapid 

decreases of the surface roughness is due to the grain size decreases. 

    The lower roughness and grain size reduces represent good 

homogeneity of the TiO2 films annealed at 550 ºC [135]. According to the 

above discussion, it can be concluded that the annealing temperature can 

strongly affect the structural properties of TiO2 films and suitable 

annealing temperature is around 550 ºC leading to improvement of TiO2 

crystallinity [136]. The dense films enhance the cell efficiency due to 

increase in absorption amount of dye in TiO2 layer. 

           

Table (4-2): Average roughness and root mean square (RMS) of TiO2 

films by AFM technique. 

 

 

TiO2 films 

 

Surface 

Roughness (nm) 

 

RMS 

(nm) 

 

Grain Size 

(nm) 

As-deposited 0.882 1.02 91.02 

Annealing at 350 ºC 0.467 0.546 91.00 

Annealing at 550 ºC 0.356 0.423 82.48 
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4-4 J-V Characteristics of DSSCs 

4-4-1 The Effect of TiO2 Thickness on DSSC Efficiency 

    Figure (4-12) shows the photocurrent density-voltage characteristics of 

DSSCs using different TiO2 film thicknesses (10 µm, 20 µm, 30 µm) 

prepared by Doctor-Blade technique at annealing temperature of 550 °C 

for 30 minutes. The various photovoltaic parameters of these DSSCs are 

shown in Table (4-3). From the results, it was observed that JSC and VOC 

of DSSC are affected by TiO2 film thickness. VOC decrease with an 

increase of the film thickness beyond 20 µm. This is attributed as a 

consequence of the higher charge recombination and restricted mass 

transport in thicker films due to the augmentation of surface area.  In 

addition, it is found that FF also reduces by increasing the thickness of 

the TiO2 film beyond 20 µm due to a higher series resistance [137]. From 

the figure (4-12) and Table (4-3), it can be noticed that the optimum film 

thickness is 20 µm. Due to the optimum film thickness of TiO2 film, a 

higher adsorption of the N719 dye through the TiO2/dye layers can be 

achieved. However, the JSC and VOC of DSSC with a TiO2 film thickness 

of 30 μm (2.741 mA/cm2 and 0.619 V) are smaller than those of DSSC 

with a TiO2 film thickness of 20 μm (5.783 mA/cm2 and 0.666 V), 

respectively. This indicates that the lower transmittance of the TiO2 film 

with a thickness of 30 μm reduces the incident light intensity on the N719 

dye. The optimum efficiency (ɳ) of (3.587 %) with JSC and VOC of 5.783 

mA/cm2 and 0.666 V, respectively, was obtained by the TiO2 film with a 

thickness of 20 μm. The variations of the JSC and efficiency indicate that 

the efficiency increase is largely due to the JSC increase [2]. The 

maximum efficiency (ɳ) of 3.587 % achieved at thickness of 20 µm. 

Also, the maximum efficiency enhancement was about 137 %. 
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     Fig.(4-12): J-V curves of DSSCs using various TiO2 film thicknesses. 

Table (4-3): The photovoltaic parameters of DSSCs fabricated using 

different thicknesses of TiO2 films. 
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137  

1.343 0.366 2.079 0.323 3.429 0.535 10 
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4-4-2 The Effect of Dye Concentration on DSSC Efficiency 

   Figure (4-13) shows the J-V characteristics of DSSCs prepared by 

TEC-8 Ω, TiO2 film thickness of 10 µm annealed at 550 °C for 30 

minutes and various concentrations of N719 dye (0.125 mM, 0.25 mM 

and 0.5 mM). From the J–V curves, it was noted that short–circuit current 

density increases with increasing dye concentration. This shows that at 

high concentrations the TiO2 electrode will have enough dye adsorption 

to obtain high conversion efficiency. As shown in the figure, the DSSC 

with 0.5 mM dye concentration has high VOC and JSC, subsequently 

obtained largest efficiency. However, at low dye concentration (0.125 

mM), the adsorption is low and the VOC, JSC and efficiency becomes 

lower. This indicated that insufficient surface coverage of the light 

absorbing dye on the surface of the film would result in a reduction in the 

number of electron and electron-hole pairs generated after photon 

absorption, consequently decreasing JSC and power conversion efficiency. 

Also observed that VOC variation with concentration variation which is 

thought to be due to reactivity and instability with N719 dye [138]. 

    Table (4-4) shows the photovoltaic parameters of the DSSCs prepared 

using different concentrations of N719 dye solution. The maximum 

efficiency (ɳ) of 2.504 % achieved at dye concentration of 0.5 mM. Also, 

the maximum efficiency enhancement was about 86 %. 
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   Fig.(4-13): J-V curves of DSSCs using different dye concentrations. 

 

Table (4-4): The photovoltaic parameters of DSSCs fabricated using 

different concentrations of N719 dye solution.  
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enhancement 

 (%) 

0.125 0.36 1.289 0.212 0.545 0.249 0.231  

 

86 
0.25 0.535 3.429 0.323 2.079 0.366 1.343 

0.5 0.585 5.197 0.420 2.981 0.412 2.504 
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4-4-3 The Effect of Dyes Mixing on DSSC Efficiency 

    Figure (4-14) illustrates the J-V characteristics of the DSSCs prepared 

by TEC-8 Ω, TiO2 film thickness of 10 µm annealed at 550 °C for 30 

minutes and sensitized with individual N719, Z907 and mixture dyes 

(N719+Z907, 1:1 v/v ratio). It was found that DSSC with mixture dye 

showed the largest area of the J-V curve compared with individuals 

DSSCs, indicating that this cell generated the highest output power. The 

photovoltaic parameters which are summarized in Table (4-5). The 

mixture dye was expected to perform better than individual dyes due to 

the broadening of the UV-Vis spectrum of mixture dye in the blue region 

[139].  

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.(4-14): J-V curves of DSSCs using N719, Z907 and mixture dyes 

(N719 + Z907, 1:1 v/v ratio). 
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   From the results, it was observed that JSC, VOC and conversion 

efficiency of DSSC with mixture dye are higher compared to individual 

dye of N719 and Z907, respectively, which is likely to be due to the 

wideband absorption of the dyes [139]. This also indicates that mixed 

cosensitization of the two dyes could effectively transfer energy 

synergistically to the TiO2 semiconductor [140] resulting in an 

enhancement of the photovoltaic parameters of the cell. The efficiency 

achieved by the DSSC using mixed dye was 2.287 %. Also, the 

maximum efficiency enhancement was about 70 %. 

 

Table (4-5): The photovoltaic parameters of DSSCs fabricated using 

N719, Z907, and mixture dye (N719 + Z907, 1:1 v/v). 

 

 

    Dye 

sensitizer 

 

 

VOC 

(V) 

 

JSC 

(mA/cm2) 

 

 

Vmax 

(V) 

 

Jmax 

(mA/cm2) 

 

 

FF 

 

 

ɳ 

(%) 

 

 

    

   Efficiency 

enhancement 

 (%)  

N719 0.535 3.429 0.323 2.079 0.366 1.343  

 

70 

Z907 0.535 2.135 0.360 1.539 0.485 1.108 

Mix  0.655 4.132 0.44 2.599 0.422 2.287 

 

4-4-4 The Effect of Substrate Resistance on DSSCs 

Efficiency 

    The DSSCs are fabricated using TEC-8 Ω, TEC-15 Ω, TiO2 film with 

thickness of 10 µm annealed at 550 ºC for 30 minutes and Z907 dye as 

sensitizer with concentration 0.25 mM.     
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    Figure (4-15) demonstrates the J-V characteristics of two DSSCs based 

on TEC substrates of different resistances. It was observed that the DSSC 

with TEC-8 Ω has current density-voltage curve area larger than that of 

the DSSC with TEC-15 Ω. It was also noted that JSC increases for DSSC 

with TEC-8 Ω compared to that of DSSC with TEC-15 Ω, while VOC 

remains unchanged. Subsequently, an increase in short circuit current 

density leads directly to an increase in the energy conversion efficiency. 

This can be ascribed to difference in the thickness of Fluorine Tin Oxide 

(FTO) layer, TEC-8 Ω is 600 nm thick while TEC-15 Ω is 300 nm thick. 

The photovoltaic parameters of the DSSCs prepared using different TEC 

substrates are summarized in Table (4-6). The maximum efficiency of 

1.786 % achieved at TEC-8 Ω substrate. Also, the maximum efficiency 

enhancement was about 84 %. 

 

          Fig.(4-15): J-V curves of DSSCs using different TEC substrates. 
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Table (4-6): The photovoltaic parameters of DSSCs fabricated using 

different TEC substrates. .,;.;  

 

Substrate 

Type 

 

VOC 

(V) 

 

JSC 

(mA/cm2) 

 

 

Vmax 

(V) 

 

Jmax 

(mA/cm2) 

 

 

FF 

 

 

ɳ (%) 

 

 

 

Efficiency 

enhancement 

 (%) 

TEC-15 Ω 0.53 3.011 0.289 1.682 0.305 0.972  

84  

TEC-8 Ω 0.53 4.069 0.31 2.881 0.414 1.786 

 

4-4-5 The Effect of Au NPs on DSSCs Efficiency 

    The DSSCs are prepared using TEC-8 Ω, TiO2 layer of thickness of 10 

µm annealed at 550 ºC for 30 minutes and Z907 dye as sensitizer contains 

Au NPs with concentration 0.0125 mM.       

    Figure (4-16) shows current density-voltage characteristics of DSSC 

with Au NPs. For comparison, the current density-voltage characteristic 

of the reference DSSC without Au NPs is also shown. Table (4-7) lists 

the cells performance data obtained from the J-V curve measurements. 

From the results, it was found that photocurrent density (JSC) and open-

circuit voltage (VOC) increase for DSSC with Au NPs compared to the 

DSSC prepared without Au NPs. An increase in JSC leads directly to an 

increase in the power conversion efficiency. The enhanced performance 

was largely attributed to plasmons of Au NPs that may scatter more 

photons to the substrate in comparison to the particle free solar cell, 

leading to increase the optical path length in the solar cell [117]. The 

efficiency achieved by the DSSC using Au NPs was 2.367 %. Also, the 

maximum efficiency enhancement was about 84 %. 
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Fig (4-16): J-V curves of DSSCs with and without Au NPs. 

Table (4-7): The photovoltaic parameters of DSSCs with and without Au 

NPs.  

 

DSSC 

Type 

 

 

VOC 

(V) 

 

JSC 

(mA/cm2) 

 

 

Vmax 

(V) 

 

Jmax 

(mA/cm2) 

 

 

FF 

 

 

ɳ 

(%) 

 

 

 

Efficiency 

enhancement 

 (%) 

Without 

Au NPs 

0.513 3.949 0.298 2.155 0.317 1.285  

84 

With 

Au NPs 

0.606 5.859 0.304 3.893 0.333 2.367 

 

4-4-6 The Effect of Two-Faces on the Efficiency of DSSC  

    The DSSCs are prepared using TEC-8 Ω, TiO2 layer of thickness of 20 

µm annealed at 550 ºC for 30 minutes and N719 dye as sensitizer with 

concentration 0.25 mM. 

       Figure (4-17) demonstrates the J-V curves of DSSCs when incident 

radiation is perpendicular to front side, perpendicular to back side and 
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with angle 45º on the front side. In case of front-side (TiO2 side), it was 

found that JSC and VOC recorded lightly increase for DSSC illuminated 

with  perpendicular radiation compared to that illuminated with angle 45º, 

this proves that DSSC is not affected by the fall angle reverse silicon cell.  

Subsequently, this increase leads directly to lightly increase in energy 

conversion efficiency.  It can be also noted that JSC and VOC increase for 

perpendicular incident light on front-side (TiO2 side) compared to that 

back-face (Pt side) of DSSC. This variation is largely attributed to 

response time. Response time increases for back-side compared to that of 

front-side of DSSC. This attributed to electron trap filling and emptying 

in the TiO2. i.e. the few electrons that are injected into the TiO2 layer 

suffer from trapping and release from traps before reaching the back 

contact, this lead to delay in the electron transport resulting in a longer 

response time [141]. Table (4-8) shows the photovoltaic parameters of the 

DSSCs prepared using front face, back face and with angle 45º. The 

maximum efficiency (ɳ) of 3.342 % achieved at the front face.  

 

    

 

 

 

 

 

 

 

 Fig. (4-17): J-V curves of DSSCs using front and back side of substrate. 

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

J 
(m

A
/c

m
2
)

V (volts)

back- side

front - side

angle 45ºangle 45º  



 Results and Discussion                                       Chapter Four 

 
79 

 

Table (4-8): The photovoltaic parameters of DSSCs of front, back face 

and angle 45º. 

 

DSSC 

Type 

 

 

VOC 

(V) 

 

JSC 

(mA/cm2) 

 

 

Vmax 

(V) 

 

Jmax 

(mA/cm2) 

 

 

FF 

 

 

ɳ 

(%) 

 

 

Back side 0.648 3.602 0.441 2.886 0.545 2.546 

Front side 0.654 5.274 0.438 3.815 0.484 3.342 

Angle 45º 0.622 5.208 0.401 4.138 0.512 3.318 

 

4-4-7 IPCE Measurement of DSSC 

    Figure (4-18) shows the incident monochromatic photon-to-current 

conversion efficiency (IPCE) as a function of wavelength. An IPCE (%) 

of 52.7 % was obtained of DSSC with TiO2 film thickness of 20 µm 

annealed at 550 ºC for 30 minutes, TEC-8 Ω and N719 dye as sensitizer 

with concentration 0.25 mM.  

     As shown in the figure, high IPCE value represents high optical 

absorption and thus improves the incident photon-to-current conversion 

efficiency. This result may be also attributed to the better transmittance of 

TiO2 film to increase the light intensity reaching the N719 dye.  

    The results of IPCE indicate that the wavelength of incident light 

ranges from 300 to 800 nm contributes to photon-to-current conversion. 

The reason is that N719 dye has the highest quantum efficiency at the 

wavelength of 450 nm. Thus, the highest IPCE is observed at 450 nm for 

the prepared DSSC. The JSC enhancement is a result of unfailing 

improvement of IPCE [142].  
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Fig.(4-18) : IPCE as a function of wavelength of the DSSC. 

 

4-4-8 Spectral Response (R) of DSSC 

    Figure (4-19) shows the spectral response of DSSC with TiO2 film 

thickness 20 µm annealed at 550 °C and N719 dye with concentration 

0.25 mM as sensitizer. From the response curve, one peak could be 

recognized. The maximum spectral response value of DSSC is 1µA/µW 

at 450 nm.  This indicates that absorption of dye molecules on TiO2 film 

largely, led to enhancement DSSC efficiency. 

 

 

 

 

 

 

 

 

 

Fig.(4-19) : Spectral response curve of DSSC. 
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4-5 Optical Transparency of DSSC 

     One of the important properties DSSC is its transparency. The typical 

DSSC based on TiO2 film with thickness of 20 µm and N719 dye as 

sensitizer is used to visualize the transparency. To further highlight the 

transparency of DSSCs, we took images through a 1 cm × 1 cm cell 

fabricated. Figure (4-20) shows the images taken by using DSSC as 

mediator between camera and printed black words on white paper and the 

image of flowers. The images show that DSSC have high transparency 

due to the optical transparency of TiO2 film which is increased with 

decreasing particle size and increasing film homogeneity [143]. This 

property is very important in DSSC applications such as using solar cells 

as buildings windows [144].  

 

 

 

 

 

 

 

Fig.(4-20): High transparency of DSSC (a, b and c) images taken through 

DSSC for flowers and thesis subject. 
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4-6 Conclusions  

From this work, several points can be concluded:  

1- DSSCs have been fabricated successfully, via using N719 and Z907 

dyes as sensitizer material, by employing a simple route without the need 

for any special and complicated facilities.  

2- Solar cells with efficiency enhanced as high as 92.2 % have been 

achieved in this study.  

3- The mixing of the two dyes, N719 and Z907, has led to improve the 

DSSC efficiency from 1.343 % (in case of N719) and 1.108 % (in case of 

Z907) to 2.287 % because of the broad absorption band of the dye 

mixture in the visible region of the spectrum.  

4- Adding Au NPs to Z907 dye enhanced the efficiency of the DSSCs to 

about 2.367 % because the plasmons of the nanoparticles may act as 

scattering leading to increase the optical path length of the photons in the 

solar cell which subsequently resulted in efficiency enhancement.  

5- DSSC highest efficiency was recorded at 20 µm thickness of TiO2 

layer deposited on TEC-8 Ω substrate using N719 dye with 0.25 mM 

concentration.  

6- All the prepared DSSCs have high transparency, which qualifies them 

for use as buildings windows. 

7- DSSCs are not affected by incident angle of light radiation. 

  

4-7 Future Works  

 Using another dye (like N3) to enhance the efficiency of DSSC.  

 Using gel-electrolyte to enhance the efficiency of DSSC.  

 Using another noble metal (like Ag NPs) to enhance the efficiency 

of DSSC. 
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 Studying the effect of the solar cell temperature on conversion 

efficiency. 

 Using stainless steel as an electrode (cathode) which can serve as a 

reflected surface to increase the conversion efficiency of the solar 

cell.  

 Mixed noble metal (like Au NPs and Ag NPs) to enhance the 

efficiency of DSSC.  
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